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perconjugative mechanism for the electron-releasing metal-
lomethyl substituents.10'" This conclusion is based on good 
experimental evidence that for structurally similar com­
pounds the chemical shift of C4 is not influenced by steric, 
compressional, and related factors but reflects changes in 
local ir-charge density.12 The para (C4)

 13C SCS for 1, 5, 
and 7 (Table II) parallels the 19F SCS (ppm) forp-fluoro-
benzyltrimethylstannane (2.60), 6 (2.14), and 8 (2.15).13 

Secondly, the coupling constant data in Table I for 
entries 1-4 demonstrate the generality that 5Zc4-X is uni­
formly larger than 4Zc3-X for benzyl-metallic systems. 
That this phenomenon has its origin in carbon-metal (tr-x) 
hyperconjugation, and is a ground state property of some 
significance, is clearly exemplified by a comparison of the 
coupling data for compound 10 with the data for compound 
5. Note that in 10 where the dihedral angle (0) is zero, 
5-̂  C4-Sn is less than 5 Hz, whereas in 5 where 6 ^ 60°, 
Vc4-Sn is 15.4 Hz! This striking result suggests that the 
long-range coupling is being determined predominantly by 
a Tr-electron contribution to the coupling mechanism which 
is enhanced when direct access to the tin s orbitals is possi­
ble via a- T interactions. Interestingly, the similar value of 
5Zc4-Sn for 1 and 5 implies that the average or effective di­
hedral angle (6) in the mobile monocyclic species 
ArCH2Sn(CH3)3 must approach 60°. This was expected, 
for if C-Sn hyperconjugation is important, it must tend to 
increase this angle in order to maximize the resulting stabi­
lization.14 

Finally, the similar values of 5Zc4-Sn for 7 (15.7 Hz) and 
5 (15.4 Hz) indicate that the effective dihedral angle (0) for 
the comformationally mobile tetralin system must also be 
^60° . This can only be achieved if the predominant confor­
mation has the Sn(CH3)3 group axially orientated.4 The 
magnitude of the vicinal coupling constant 3Zc9-Sn (19.2 
Hz) unambiguously confirms this conclusion.15 These con­
clusions are strongly supported by the appropriate relative 
chemical shifts (13C and 19F). 

Further studies on other model systems are in progress 
and these will be reported on shortly. 
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Hot 1,4-Biradicals from the Photodecomposition 
of 3-Ethyl-2-propylthietane Vapor1 

Sir: 

Biradicals are important intermediates in the photochem­
ical and thermal decompositions of many classes of com­
pounds, including the cyclic ketones,2 the cyclic azo com­
pounds,3 those alkanones with 7-hydrogen atoms,4 and the 
cyclic ethers and thioethers.5 In many of the photochemical 
studies of these systems it has been suggested that "hot" 
biradicals may be involved and the consequences of the vi­
brational and rotational disequilibrium which exists in such 
species has been a subject of great interest and some contro­
versy. 4c'd'e 

3-Ethyl-2-propylthietane (EPT), prepared according to 
Searles, et al.,6 was purified and separated into cis and 
trans isomers by preparative gas chromatography. Samples 
of pure cis- EPT or pure trans- EPT at pressures of 0.5 Torr 
were allowed to come to thermal equilibrium with mercury 
vapor at 25.0 ±0.1° and were illuminated with 253.7-nm 
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Figure 1. 

radiation from a filtered low-pressure mercury lamp. Prod­
ucts resulting from 30 to 60 min of photolyses of either EPT 
isomer were 1-butene, cis- and trans- 3-hetene, isomerized 
EPT, and, by inference, thioformaldehyde and thiobutyral-
dehyde, although these two latter products could not be 
measured.7 The same products, but in different relative 
yields, were found on direct photolysis of EPT at 313 nm.5c 

The products of greatest interest are the isomeric 3-hep-
tenes since the relative rates of their formation indicate the 
stereochemical course of the decomposition which results 
from initial C2-S cleavage.8 Starting with trans- EPT sub­
strate, the ratio of the rate of formation of trans- 3-heptene 
to that of cis- 3-heptene, R (trans- 3-heptene)//? (cis- 3-hep­
tene), is 3.61 ± 0.07, substantially smaller than the value of 
6.88 obtained from direct photolysis at 313 nm. Starting 
with cis- EPT substrate, R (trans- 3-heptene)/./? (cis- 3-hep­
tene) = 1.30 ± 0.02 for the mercury photosensitized de­
composition compared with 0.51 for direct photolysis at 313 
nm. The variation in R (trans- 3-heptene)/i? (cis- 3-hep­
tene) as a function of the pressure of added Ar is shown in 
Figure I.9 Regardless of which isomer is being decomposed, 
the same value of R (trans- 3-heptene)//? (cis- 3-heptene), 
1.75 ± 0.05, is obtained at high pressure. By comparison, in 
direct photolysis the addition of up to 1 atm of CO2 had no 
effect on this ratio. 

These results indicate that "hot," "triplet" 10 biradicals 
which can decompose rather stereospecifically in the ab-

Scheme I. Reactions of thermalized triplet M-Biradicals0 
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1 For simplicity, only initial C2-S cleavage of trans- EPT is shown. 

sence of deactivating collisions and which can be deactivat­
ed by moderate pressures of Ar result from the interaction 
of EPT with triplet mercury atoms. Scheme I is consistent 
with experiments under conditions where deactivation is the 
only important process involving the initially formed hot 
triplet biradical, i.e., for P Kr > 100 Torr. 

The fact that the same value of R (trans -3-heptene)/ 
R (cis -3-heptene) is obtained at high pressure regardless of 
which EPT isomer is decomposed is conclusive evidence 
that thermal equilibrium among the biradical rotamers is 
attained at high pressure. In other systems4"1'11 ring closure 
of photolytically derived singlet 1,4-biradicals has been 
shown to be fast relative to the time required for multiple 
rotations about C-C bonds. If the same is true in this sys­
tem, equilibrium must be established among triplet, not sin­
glet, biradical rotamers. The rate determining step in the 
decomposition and/or ring closure of these 1,4-biradicals 
may therefore be their triplet-singlet intersystem crossing, 
in agreement with previous suggestions.2a-4d'6 The thermo­
dynamic equilibrium constant, A: (cf. Scheme I), is equal to 
1.75 ± 0.05 at 25°. Thus, the average standard free energy 
of those triplet biradical rotamers which lead to trans- 3-
heptene is 330 ± 20 cal/mol smaller than the average stan­
dard free energy of those rotamers which lead to cis- 3-hep­
tene. As expected, the transoid rotamers are somewhat 
more stable than those having a cisoid conformation. 

It is energetically feasible for the triplet biradical to un­
dergo several additional reactions at low pressures when it 
retains a substantial fraction of its initial complement of ex­
cess internal energy.12 From the standpoint of Scheme I, 
the most important of these additional reactions is the di­
rect decomposition of the hot triplet into 3-heptene and 
CH2S in its 3(n, x*) excited state since such a reaction 
would provide a rapid pathway which circumvents the slow 
spin-forbidden decomposition step. Preliminary experi­
ments have failed to reveal any evidence for CH2S in its 
3(n, x*) state, however. 
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